«Утверждена» Распоряжением директора общеобразовательной школы при Посольстве России в Польше Протокол №22 от 06.09. 2023 г.

«Принята» Педагогическим советом общеобразовательной школы при Посольстве России в Польше Протокол №1 от 30.08.2023г.

«Рассмотрена» на заседании школьного методического объединения

Протокол №1 от 29.08.2023г.

Программа элективного курса по физике в 11 классе «Решение физических задач. Подготовка к ЕГЭ»

Программа рассчитана на 34 часа в год 1 час в неделю (по учебному плану 1 час)

Составитель: Турлов А.В., учитель физики

Пояснительная записка

Цель элективного курса

- обеспечить дополнительную поддержку учащихся классов универсального обучения для сдачи ЕГЭ по физике (эта часть программы напечатана прямым шрифтом и предусматривает решение задач главным образом базового и отчасти повышенного уровня);
 - развить содержание курса физики для изучения на профильном уровне

Методические особенности изучения курса

Курс опирается на знания, полученные при изучении курса физики на базовом уровне. Основное средство и цель его освоения - решение задач. Лекции предназначены не для сообщения новых знаний, а для повторения теоретических основ, необходимых для выполнения практических заданий, поэтому носят обзорный характер при минимальном объеме математических выкладок. Теоретический материал удобнее обобщить в виде таблиц, форму которых может предложить учитель, а заполнить их должен ученик самостоятельно. Ввиду предельно ограниченного времени, отводимого на прохождение курса, его эффективность будет определяться именно самостоятельной работой ученика, для которой потребуется не менее 3-4 ч в неделю.

В процессе обучения важно фиксировать внимание обучаемых на выборе и разграничении физической и математической модели рассматриваемого явления, отработать стандартные алгоритмы решения физических задач в стандартных ситуациях и в измененных или новых ситуациях (для желающих изучить предмет и сдать экзамен на профильном уровне). При решении задач рекомендуется широко использовать аналогии, графические методы, физический эксперимент.

Задачи:

- 1. Научить учащихся самостоятельно анализировать конкретную проблемную задачу и находить наилучший способ её решения.
- 2. Развитие физического и логического мышления школьников.
- 3. Развитие творческих способностей учащихся и привитие практических умений.

В результате прохождения программы учащиеся должны знать:

- основные понятия физики;
- основные законы физики;
- вывод основных законов;
- понятие инерции, закона инерции;
- виды энергии;
- разновидность протекания тока в различных средах;
- состав атома:

• закономерности, происходящие в газах, твердых, жидких телах.

В результате прохождения программы учащиеся должны уметь:

- производить расчеты по физическим формулам;
- производить расчеты по определению координат тел для любого вида движения;
- производить расчеты по определению теплового баланса тел;
- решать качественные задачи;
- решать графические задачи;
- решать задачи на соответствие;
- снимать все необходимые данные с графиков и производить необходимые расчеты;
- писать ядерные реакции, рассчитывать период полураспада, энергию связи, энергетический выход ядерных реакций;
- составлять уравнения движения;
- по уравнению движения, при помощи производной, находить ускорение, скорость;
- давать характеристики процессам происходящие в газах;
- строить и объяснять графики изопроцессов;
- описывать процессы при помощи уравнения теплового баланса;
- применять закон сохранения механической энергии;
- применять закон сохранения импульса;
- делать выводы.

Содержание курса

Механика (8 ч)

<u>Кинематика</u> поступательного и вращательного движения. Уравнения движения. Графики основных кинематических параметров.

<u>Динамика</u>. Законы Ньютона. Силы в механике: силы тяжести, упругости, трения, гравитационного притяжения.

Статика. Момент силы. Условия равновесия тел. Гидростатика.

<u>Движение тел со связями</u> – приложение законов Ньютона.

Законы сохранения импульса и энергии.

Молекулярная физика и термодинамика (6 ч)

Основное уравнение МКТ газов.

<u>Уравнение состояния идеального газа</u> — следствие из основного уравнения МКТ. Изопроцессы..

Первый закон термодинамики и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

Второй закон термодинамики, расчет КПД тепловых двигателей.

Электродинамика (8 ч)

Электростатика. Напряженность и потенциал электростатического поля точечного заряда. Графики напряженности и потенциала. Принцип суперпозиции электрических полей. Энергия взаимодействия зарядов.

Конденсаторы. Энергия электрического поля

<u>Постоянный ток.</u> Закон Ома для однородного участка и полной цепи. Расчет разветвленных электрических цепей.

Магнитное поле. Принцип суперпозиции магнитных полей. Силы Ампера и Лоренца. Электромагнитная индукция

Колебания и волны. (5 ч)

<u>Механические гармонические колебания.</u> Простейшие колебательные системы. Кинематика и динамика механических колебаний, превращения энергии. Резонанс.

<u>Электромагнитные гармонические колебания.</u> Колебательный контур, превращения энергии в колебательном контуре. Аналогия электромагнитных и механических колебаний.

Переменный ток.

Механические и электромагнитные волны.

Оптика (4ч)

<u>Геометрическая оптика.</u> Закон отражения и преломления света. Построение изображений неподвижных предметов в тонких линзах, плоских зеркалах.

<u>Волновая оптика.</u> Интерференция света, условия интерференционного максимума и минимума. Дифракция света. Дифракционная решетка. Дисперсия света.

Квантовая физика (3 ч)

Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта.

<u>Применение постулатов Бора</u> для расчета линейчатых спектров излучения и поглощения энергии водородоподобными атомами

<u>Атомное ядро.</u> Закон радиоактивного распада. Применение законов сохранения заряда, массового числа в задачах о ядерных превращениях.

Учебно-тематический план

(1 час в неделю, всего 34 часа)

N₂	Тема	Примерные	Примечание
п/п		сроки	
	Тема 1. Механика		
1 / 1	Кинематика поступательного и		
	вращательного движения.		
	Уравнения движения. Графики		
	основных кинематических		
	параметров		
2/2	Решение задач по теме «Законы		
	Ньютона»		
3/3	Решение задач по теме «Силы в механике»		
4/4	Решение задач по теме «Статика»		
5 / 5	Решение задач по теме		
	«Гидростатика»		
6/6	Решение задач по теме «Законы		
	сохранения»		
7/7	Решение задач на соответствие		
8/8	Решение тестовых заданий		
	Тема 2. Молекулярная физика и		
	термодинамика.		
9 / 1	Решение задач по теме «Основное		
	уравнение МКТ, Уравнение		
	состояния идеального газа»		
10 / 2	Решение задач по теме		
	«Изопроцессы»		
11/3			
	«Первый и второй законы		
	термодинамики»		
12 / 4	Решение задач на уравнение		
	теплового баланса	_	
13 / 5	7.1		
14 / 6	Решение тестовых задач		
	Тема 3. Электродинамика		
15 / 1	Решение задач по электростатике.		
16/2	Решение задач по электростатике.	<u> </u>	
17 / 3	Решение задач на законы		
	постоянного тока	<u> </u>	
18 / 4	Решение задач на описание		
	магнитного поля.	<u> </u>	
19 / 5	Решение задач на закон		
	электромагнитной индукции.		

№ п/п	Тема	Примерные сроки	Примечание
20 / 6	Решение задач на расчет		
	индуктивности и энергии		
	магнитного поля. Явление		
	самоиндукции.		
21 / 7	Решение задач на соответствие		
22 / 8	Решение тестовых задач		
	Тема 4. Колебания и волны		
23 / 1	Решение задач на описание		
	механических и электромагнитных колебаний.		
24 / 2	Решение задач на различные типы		
	соединений в цепи переменного		
	тока.		
25 / 3	Решение задач на описание		
	механических и электромагнитных		
	волн.		
26 / 4	Решение задач на соответствие		
27 / 5	Работа с тестами по колебаниям и		
	волнам.		
	Тема 5. Оптика		
28 / 1	Решение задач по геометрической оптике.		
29/ 2	Решение задач на волновые свойства		
	света. Шкала электромагнитных излучений.		
30 / 3	Решение задач на соответствие		
31 / 4	Работа с тестами по оптике.		
	Тема 6. Квантовая физика		
32 / 1	Решение задач на законы		
	фотоэффекта, на расчет		
	характеристик фотона. Гипотеза де		
	Бройля.		
33 / 2	Решение задач на описание ядерных		
	реакций, расчет энергии связи		
	атомного ядра, энергетического		
	выхода.		
34 / 3	Решение тестовых заданий.		

Литература, используемая учащимися:

- 1. Г.Я. Мякишев ., Б.Б. Буховцев., В.М. Чаругин. Физика. Учебник для 11 класса общеобразовательных. учреждений. Базовый и профильный уровень. М., «Просвещение», 2019 г.
- 2. А.П.Рымкевич. Физика. Задачник. 10-11 классы. М., «Дрофа», 2015 г
- 3. Г.Н.Степанова. Сборник задач по физике. 10-11 классы. М., «Просвещение», 2015 г